Commit 932155c6 by psd

 %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python import numpy as np import numpy as np from matplotlib.patches import Rectangle from matplotlib.patches import Rectangle import matplotlib.pyplot as plt   %% Cell type:markdown id: tags: %% Cell type:markdown id: tags: ## Theoretical background ## Theoretical background $\Psi_k = \frac{1}{\sqrt{N}} \sum_j e^{(j\,k\cdot r_j)} \, \phi_j = \frac{1}{\sqrt{N}} \sum_j c_k(r_j) \, \phi_j$ $\Psi_k = \frac{1}{\sqrt{N}} \sum_j e^{(j\,k\cdot r_j)} \, \phi_j = \frac{1}{\sqrt{N}} \sum_j c_k(r_j) \, \phi_j$ Notation: Notation: $[\,]_{nm}$ = matrix of dimensions $n\times m$ $[\,]_{nm}$ = matrix of dimensions $n\times m$ - h = $[\phi_0]_{nn}$ - h = $[\phi_0]_{nn}$ - t = $[\phi_{+1}]_{mnn}, \ m=1$ for first nn hopping - t = $[\phi_{+1}]_{mnn}, \ m=1$ for first nn hopping For first nn: For first nn: - $c(k) = e^{(j\,k\cdot R)} \, ,k=(0,0,0)...(2\pi,0,0) \, , R=(1,0,0)$ - $c(k) = e^{(j\,k\cdot R)} \, ,k=(0,0,0)...(2\pi,0,0) \, , R=(1,0,0)$ - $[h(k)]_{nn} = [h]_{nn} + c(k) \cdot [t]_{0nn} + (c(k) \cdot [t]_{0nn})^H$ - $[h(k)]_{nn} = [h]_{nn} + c(k) \cdot [t]_{0nn} + (c(k) \cdot [t]_{0nn})^H$ - $E(k)_n=eigvalsh([h(k)]_{nn})$ - $E(k)_n=eigvalsh([h(k)]_{nn})$ %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python def bands(h,t,K): def bands(h,t,K): ''' ''' input: input: h = [\phi_0]_nn h = [\phi_0]_nn t = [\phi_1]_mnn t = [\phi_1]_mnn variables: variables: ''' ''' kpts = np.linspace(0,K,300) kpts = np.linspace(0,K,300) E = np.zeros((len(kpts),len(h))) E = np.zeros((len(kpts),len(h))) R = [1,0,0] R = [1,0,0] for k, kpt in enumerate(kpts): for k, kpt in enumerate(kpts): c_k = np.exp(1j*2*np.pi*np.dot(R,[kpt,0,0])) c_k = np.exp(1j*2*np.pi*np.dot(R,[kpt,0,0])) h_k = h + np.sum(c_k*t,axis=0) + np.conj(c_k)*np.sum(np.swapaxes(t,1,2),axis=0) h_k = h + np.sum(c_k*t,axis=0) + np.conj(c_k)*np.sum(np.swapaxes(t,1,2),axis=0) E[k] = np.linalg.eigvalsh(h_k) E[k] = np.linalg.eigvalsh(h_k) return kpts,E return kpts,E   %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python def make_ht(e,tau): def make_ht(e,tau): dim = e.ndim dim = e.ndim if dim>0: if dim>0: dim = len(e) dim = len(e) h = np.zeros((dim,dim),complex) h = np.zeros((dim,dim),complex) t = np.zeros((dim,dim),complex) t = np.zeros((dim,dim),complex) h.flat[::dim+1]=e h.flat[::dim+1]=e h.flat[1::dim+1]=tau[0] h.flat[1::dim+1]=tau[0] h.flat[dim::dim+1]=np.conj(tau[0]) h.flat[dim::dim+1]=np.conj(tau[0]) t[-1,0]=tau[1] t[-1,0]=tau[1] else: else: h = np.array(e).reshape(1,1) h = np.array(e).reshape(1,1) t = np.array(tau).reshape(1,1) t = np.array(tau).reshape(1,1) return h,np.expand_dims(t,0) return h,np.expand_dims(t,0)   %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python def visulize(ax,h,t,replica=5): def visulize(ax,h,t,replica=5): import matplotlib.cm as cm import matplotlib.cm as cm colors = cm.hot(np.diag(h).real) colors = cm.hot(np.diag(h).real) colors = np.tile(colors,(replica,1)) colors = np.tile(colors,(replica,1)) dim = len(h) dim = len(h) if dim>1: if dim>1: uc = np.arange(dim)*1/abs(h[0,1].real) uc = np.arange(dim)*1/abs(h[0,1].real) colors = cm.hot(np.diag(h).real) colors = cm.hot(np.diag(h).real) colors = np.tile(colors,(replica,1)) colors = np.tile(colors,(replica,1)) a = 1/abs(t[0,-1,0].real)+1/abs(h[0,1].real) a = 1/abs(t[0,-1,0].real)+1/abs(h[0,1].real) atoms = [uc[i]+(j*a) for j in range(replica) for i in range(dim)] atoms = [uc[i]+(j*a) for j in range(replica) for i in range(dim)] else: else: uc = 0 uc = 0 a = 1/abs(t[0,-1,0].real) a = 1/abs(t[0,-1,0].real) atoms = [uc+(j*a) for j in range(replica)] atoms = [uc+(j*a) for j in range(replica)] rect = Rectangle((-1/abs(2*t[0,-1,0].real),-0.25),a,0.5, rect = Rectangle((-1/abs(2*t[0,-1,0].real),-0.25),a,0.5, linewidth=1,edgecolor='r',facecolor='none') linewidth=1,edgecolor='r',facecolor='none') ax.add_patch(rect) ax.add_patch(rect) ax.set_ylim((-1,1)) ax.set_ylim((-1,1)) ax.scatter(atoms,np.zeros(dim*5),100,c=colors) ax.scatter(atoms,np.zeros(dim*5),100,c=colors)   %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python tau = np.array((0.2,-0.2)) tau = np.array((0.2,-0.2)) e = np.array((-0.25,-0.1)) e = np.array((-0.25,-0.1)) h, t = make_ht(e,tau) h, t = make_ht(e,tau) kpts,E = bands(h,t,1) kpts,E = bands(h,t,1)   %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python fig, axs = plt.subplots(1,2,figsize=(15,5)) fig, axs = plt.subplots(1,2,figsize=(15,5)) visulize(axs[0],h,t) visulize(axs[0],h,t) axs[1].plot(kpts,E) axs[1].plot(kpts,E)   %%%% Output: execute_result %%%% Output: execute_result [, [, ] ] %%%% Output: display_data %%%% Output: display_data ![]() ![]() %% Cell type:code id: tags: %% Cell type:code id: tags:  python  python   ... ...