To receive notifications about scheduled maintenance, please subscribe to the mailing-list gitlab-operations@sympa.ethz.ch. You can subscribe to the mailing-list at https://sympa.ethz.ch

Commit e4b81861 authored by ggandus's avatar ggandus
Browse files

Merge branch 'master' of gitlab.ethz.ch:danielep/mmm_2019

parents 1ceabedd 67cb68a7
%% Cell type:code id: tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as tck
import scipy
from scipy.special import sph_harm
from ase.io import read
from ase import neighborlist
from ase.visualize import view
from pylab import *
```
%% Cell type:markdown id: tags:
##### plot preferences
%% Cell type:code id: tags:
``` python
SMALL_SIZE = 8 #8
MEDIUM_SIZE = 12 #20
BIGGER_SIZE = 12 #12
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
```
%% Cell type:markdown id: tags:
##### Read files
%% Cell type:code id: tags:
``` python
trajectory = read('trajectory.xyz', index=':')
energy = np.loadtxt('energy.dat')
```
%% Cell type:code id: tags:
``` python
view(trajectory)
```
%% Cell type:markdown id: tags:
##### Compute distances between center of mass and the atom that moves
%% Cell type:code id: tags:
``` python
distance = np.empty(0)
for frame in trajectory:
distance=np.append(distance,np.linalg.norm(frame.get_positions()[3]))
distance/=3.405
```
%% Cell type:markdown id: tags:
##### Compute $Q_l$ with $l=6$
$
q_{lm} = \frac{1}{N_{bonds}} \sum_{N_n} y_{lm} (\theta_{ij}, \phi_{ij})
$
$
Q_l^2 = \frac{4 \pi}{2l+1} \sum_{m=-l}^l |q_{lm}|^2
$
%% Cell type:code id: tags:
``` python
#the desired Ql
l = 6
rcut = 3.405*1.391
#update the cutoff for each frame
for frame in trajectory:
array_rcut = [ rcut for number_of_atoms in frame ]
new_neighbour_list = neighborlist.NeighborList(array_rcut, self_interaction=False, bothways=True)
new_neighbour_list.update(frame)
#compute Ql for each frame
Ql = np.empty(len(trajectory))
i = 0
for frame in trajectory:
nbonds = 0
qlm = np.zeros(2*l+1)
for atom in frame:
nlist = new_neighbour_list.get_neighbors(atom.index)[0]
for theneig in nlist: #cycle over the neighbours
#get angles and distances
nbonds = nbonds+1
rij = frame[theneig].position - atom.position
dist = np.linalg.norm(rij)
phi_ij = np.arccos(rij[2]/dist)
theta_ij = np.arctan2(rij[1],rij[0])
if theta_ij < 0:
theta_ij += 2*np.pi
#move in spherical coordinates space
# In a like-oriented coordinate system at j,
#the spherical coordinates of atom i are:
if theta_ij <= np.pi:
theta_ji = theta_ij + np.pi
elif theta_ij > np.pi:
theta_ji = theta_ij - np.pi
if np.absolute(theta_ji-2*np.pi)<0.0001:
theta_ji=0.0
phi_ji = np.pi-phi_ij
#compute spherical harmonics and perform qml summation
qlm = qlm + np.array([ sph_harm(m,l,theta_ij,phi_ij) for m in range(-l,l+1) ])
qlm = np.real(qlm*np.conj(qlm)/(nbonds*nbonds))
#prefactor and second summation
Ql[i] = np.sqrt(np.pi *4 /(2*l+1)*np.sum(qlm))
i += 1
```
%% Cell type:markdown id: tags:
##### Compute asphericity
%% Cell type:code id: tags:
``` python
I = np.empty([0,3])
for frame in trajectory:
I = np.append(I,[frame.get_moments_of_inertia()],axis=0)
I = I.transpose()
asph = ((I[0]- I[1])**2 + (I[0]- I[2])**2 + (I[2]- I[1])**2 )/ (I[0]**2 + I[1]**2 + I[2]**2)
```
%% Cell type:markdown id: tags:
##### Energy representation
%% Cell type:code id: tags:
``` python
energy = np.loadtxt('energy.dat')
energy = np.transpose(energy)
epsilon = 119*8.616733e-5 #eV
energy[1] *= 27.1442/epsilon
min_e = np.min(energy[1])
energy[1] -= min_e
fig = plt.plot(energy[0],energy[1],color='crimson', lw=2)
#get the axis just defined
ax = plt.gca()
ax.set_ylabel("V/$\epsilon$")
ax.set_xlabel("replicas")
# ---- create a second axis (ax2) ----
# axis ticks
vec_tick =[]
vec_tick_values=[]
for i in range (0,len(energy[0])):
vec_tick.append(i)
vec_tick_values.append(round(Ql[i]*100.,2))
ax2 = ax.twiny()
ax2.set_xticks(vec_tick)
ax2.set_xticklabels(vec_tick_values)
ax2.set_xlabel("$Q_l$ (x 100)")
# ---- create a third axis (ax3) ----
vec_tick =[]
vec_tick_values=[]
for i in range (0,len(energy[0])):
vec_tick.append(i)
vec_tick_values.append(round(asph[i]*100.,2))
ax3 = ax.twiny()
ax3.set_xticks(vec_tick)
ax3.set_xticklabels(vec_tick_values)
ax3.set_xlabel("asphericity (x 100)")
# customising position of this third axes
ax3.xaxis.set_ticks_position("top")
ax3.xaxis.set_label_position("top")
ax3.spines["top"].set_position(("axes", +1.35))
# ---- create a forth axis (ax4) ----
vec_tick =[]
vec_tick_values=[]
for i in range (0,len(energy[0])):
vec_tick.append(i)
vec_tick_values.append(round(distance[i],2))
ax4 = ax.twiny()
ax4.set_xticks(vec_tick)
ax4.set_xticklabels(vec_tick_values)
ax4.set_xlabel("distance")
# customising position of this third axes
ax4.xaxis.set_ticks_position("top")
ax4.xaxis.set_label_position("top")
ax4.spines["top"].set_position(("axes",+ 1.7))
plt.subplots_adjust(left=0.2, right=0.75, top=0.6, bottom=0.12)
plt.savefig("LJ38_neb.png", dpi=400,transparent=True)
plt.show()
print('heigh of the barrier: ', np.max(energy[1])-energy[1][0], 'eV/ε')
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
fig, ax = plt.subplots(1,2,figsize=(10, 4),sharex='all',squeeze ='False')
#FIRST PLOT
ax[0].plot(energy[0],asph, lw=2)
ax[0].set_ylabel("asphericity")
ax[0].set_xlabel("replicas")
#SECOND PLOT
ax[1].plot(energy[0],Ql, color = 'orange',lw=2)
ax[1].set_ylabel("$Q_l$")
ax[1].set_xlabel("replicas")
plt.subplots_adjust( hspace=1)
plt.tight_layout()
#plt.savefig("Order_parameters.png", dpi=300,transparent=True)
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
##### PER DANIELE:
Volevo far salvare solo i valori di Q6 e Q4 e far loro plottare uno rispetto all'altro. Come mostrato qua sotto si tratterebbe di due righe, giusto per verificare abbiano capito i comandi di plot fondamentali
%% Cell type:code id: tags:
``` python
plt.plot(Q6,Q4, lw=2)
plt.show()
```
%%%% Output: error
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-11-e1a8b64ac527> in <module>()
----> 1 plt.plot(Q6,Q4, lw=2)
2
3 plt.show()
NameError: name 'Q6' is not defined
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
......@@ -11,3 +11,5 @@ Instructions to run the OPTIM example
d) Install gfortran: > pip install gfortran (or sudo apt-get install gfortran)
e) follow the instructions in the README in the "wales" directory created in b) by the tar extraction
f) Run OPTIM: > ./OPTIM
3) You can also install VMD.
1 -0.0604861247
2 -0.0604398861
3 -0.0603601165
4 -0.0603466196
5 -0.0605649993
6 -0.0610675649
7 -0.0617412164
8 -0.0621020546
1 -0.0604861247
2 -0.0604062235
3 -0.0603570338
4 -0.0604978883
5 -0.0608324897
6 -0.0613281263
7 -0.0618690996
8 -0.0621020546
38
i = 28, E = -0.0604861247
Ar 4.8522400000 -2.6651900000 3.6435000000
Ar -5.2381700000 2.0593400000 2.4063200000
Ar -3.5115800000 -0.8929160000 -3.2081900000
Ar 3.0473900000 -4.6175800000 -3.3040000000
Ar 0.4275980000 1.7788100000 5.7414100000
Ar -2.1344500000 -4.9187600000 1.9806900000
Ar -4.9204700000 2.6864400000 -2.5683300000
Ar 2.4913200000 -1.1986200000 -4.7849100000
Ar -1.6763300000 3.3359600000 2.9660900000
Ar 4.5677100000 3.1612800000 0.7591810000
Ar -0.8921590000 -0.9094910000 -6.3042100000
Ar -2.4657200000 2.2230900000 -5.3141100000
Ar -3.7595300000 4.8667500000 0.2771660000
Ar 2.0019100000 4.1197300000 3.2986600000
Ar 5.5745100000 -1.9713600000 -2.7891800000
Ar 5.5130800000 -0.5185000000 0.5689320000
Ar 2.4202700000 4.7953400000 -1.9891900000
Ar 1.3695100000 2.6836200000 -5.0993100000
Ar -0.0556516000 5.7908700000 0.6688920000
Ar -1.2001100000 3.9051900000 -2.3106800000
Ar 3.6843200000 1.3427300000 -2.3678900000
Ar -3.1868600000 0.6780850000 5.2747900000
Ar -0.4627220000 -3.3119700000 -3.5290300000
Ar -6.0534800000 -0.2571640000 -0.5130560000
Ar 1.8257300000 -1.6789100000 5.7934000000
Ar 4.4252700000 -4.2914700000 0.2526920000
Ar -3.9925800000 -1.5592600000 2.2988300000
Ar -4.5038100000 -3.7380800000 -0.8546470000
Ar 0.6920020000 -5.2705700000 -0.5321400000
Ar 1.3383500000 -3.1950000000 2.4254800000
Ar -1.6499800000 -2.8216800000 5.0338400000
Ar 0.9905660000 2.0984400000 0.2565250000
Ar 2.9518700000 0.4903080000 2.9706100000
Ar -0.1613890000 0.3866230000 -2.7618000000
Ar 2.2163800000 -1.6225600000 -0.8502100000
Ar -2.6217000000 1.2670300000 -0.0643446000
Ar -0.5991330000 -0.1340200000 2.7440500000
Ar -1.3041800000 -2.0965400000 -0.2158350000
38
i = 28, E = -0.0604398861
Ar 4.8091266897 -2.6503862939 3.5790393965
Ar -5.2122720462 2.0445498766 2.4223355268
Ar -3.4990173205 -0.8952576561 -3.1986510499
Ar 2.9450235638 -4.5152509485 -3.2764470339
Ar 0.4661560509 1.8087001318 5.7116329369
Ar -2.1937862754 -4.9652259301 1.9531290513
Ar -4.8981916210 2.6740325918 -2.5816127181
Ar 2.5257895586 -1.1427865515 -4.7976480884
Ar -1.6437791771 3.3116556523 2.9419180397
Ar 4.5828088915 3.2247075057 0.7556983994
Ar -0.8597855716 -0.9563913792 -6.2746301702
Ar -2.4336874554 2.1833602454 -5.3159504695
Ar -3.7598247162 4.8421286213 0.2757553976
Ar 2.0149630103 4.1910032320 3.2892658149
Ar 5.5445654933 -1.9640939719 -2.7331965031
Ar 5.5807229726 -0.4464999018 0.5891722648
Ar 2.4179656213 4.8284048229 -1.9912093856
Ar 1.3790197518 2.6938869404 -5.0806284421
Ar -0.0754472987 5.8227649930 0.6559263117
Ar -1.1934036992 3.8893390071 -2.3126918929
Ar 3.6922286341 1.3692876115 -2.3435999772
Ar -3.1280298651 0.6518990104 5.2636808385
Ar -0.5863598455 -3.3950171976 -3.5407999588
Ar -6.0525167466 -0.2450191699 -0.5098478163
Ar 1.8035950263 -1.6658526059 5.7392941911
Ar 4.3727426897 -4.3226228855 0.2326134286
Ar -3.9706328315 -1.5644538278 2.2853191108
Ar -4.5339265653 -3.7328816024 -0.8636820589
Ar 0.6342690143 -5.3421927916 -0.5415644453
Ar 1.2906540367 -3.3065091558 2.4387689153
Ar -1.6571297899 -2.8692813495 5.0033938467
Ar 0.9982507307 2.1381121813 0.2660372722
Ar 2.9879891812 0.5563458796 2.9724506842
Ar -0.1311532760 0.3581987173 -2.7437803960
Ar 2.2306788674 -1.5393361733 -0.7046155979
Ar -2.6030973092 1.2402639173 -0.0655912426
Ar -0.5449183352 -0.1707238629 2.7246550595
Ar -1.2995686385 -2.1388626824 -0.2239438396
38
i = 28, E = -0.0603601165
Ar 4.7859478785 -2.6400754035 3.5005762963
Ar -5.1984238135 2.0328479675 2.4213796436
Ar -3.4781552390 -0.8967454203 -3.1883230298
Ar 2.8130356878 -4.3869721943 -3.2540317889
Ar 0.4797668198 1.8080663837 5.7046423395
Ar -2.2250826590 -4.9812206553 1.9478645628
Ar -4.8634280720 2.6590444400 -2.6100024650
Ar 2.5773191579 -1.0567358049 -4.8481043266
Ar -1.6350851380 3.2978659334 2.9353721906
Ar 4.5848061551 3.2782155219 0.7670119016
Ar -0.8430329660 -1.0441616571 -6.2244048113
Ar -2.3781585555 2.1352914926 -5.3240031294
Ar -3.7585111220 4.8192046811 0.2638682234
Ar 2.0067392957 4.2275193034 3.2997574455
Ar 5.5105455309 -1.9586120336 -2.6972270646
Ar 5.6240114917 -0.3755888864 0.5920186288
Ar 2.4210430984 4.8591797543 -1.9791398741
Ar 1.4026318294 2.7242474195 -5.0568768881
Ar -0.0922392587 5.8339199112 0.6547198119
Ar -1.1791720577 3.8773194015 -2.3181493690
Ar 3.7003180428 1.3962946739 -2.3206114079
Ar -3.1038601751 0.6367813536 5.2523994823
Ar -0.7610994414 -3.5239850031 -3.5306152737
Ar -6.0402473419 -0.2367257980 -0.5173526807
Ar 1.8132094510 -1.6695802791 5.7001175687
Ar 4.3147129229 -4.3641203395 0.1996113412
Ar -3.9476061758 -1.5643322576 2.2709609803
Ar -4.5336706626 -3.7289013631 -0.8684361307
Ar 0.5809080632 -5.4145747569 -0.5368535275
Ar 1.2609981173 -3.3693758964 2.4361514511
Ar -1.6505851782 -2.8828019631 4.9915733976
Ar 1.0066796729 2.1649998981 0.2755287607
Ar 3.0152389018 0.6045340795 2.9814953392
Ar -0.0932350823 0.3362753896 -2.7351801748
Ar 2.2514018193 -1.4737316472 -0.5994194162
Ar -2.5818622206 1.2246726091 -0.0699582359
Ar -0.5074893057 -0.1860878007 2.7125587877
Ar -1.2783480712 -2.1619560542 -0.2289231587
38
i = 28, E = -0.0603466196
Ar 4.7624744900 -2.6290608134 3.4244885707
Ar -5.1856698262 2.0219437780 2.4206395646
Ar -3.4567556626 -0.8973228363 -3.1782739155
Ar 2.6783397270 -4.2534013180 -3.2286920944
Ar 0.4922968458 1.8073433420 5.6980559310
Ar -2.2534171721 -4.9953243178 1.9420715936
Ar -4.8312568299 2.6453556386 -2.6364857977
Ar 2.6327984101 -0.9705653914 -4.9015752525
Ar -1.6270353580 3.2852787391 2.9295262428
Ar 4.5865299638 3.3279338929 0.7774788407
Ar -0.8218418026 -1.1311349831 -6.1678113174
Ar -2.3252455612 2.0886733417 -5.3314665750
Ar -3.7573167128 4.7978253388 0.2527440267
Ar 1.9989011300 4.2612858699 3.3096232015
Ar 5.4759373938 -1.9545229570 -2.6628054539
Ar 5.6658070036 -0.3069074790 0.5940830603
Ar 2.4237182808 4.8876358814 -1.9678778989
Ar 1.4250467177 2.7544084114 -5.0360290981
Ar -0.1078499675 5.8442945485 0.6536627112
Ar -1.1662415250 3.8669406722 -2.3232170230
Ar 3.7070946821 1.4201732613 -2.2988840683
Ar -3.0814315151 0.6227302456 5.2418916377
Ar -0.9355408753 -3.6617631442 -3.5181489402
Ar -6.0286992665 -0.2289085523 -0.5244576984
Ar 1.8223858382 -1.6732990196 5.6630801844
Ar 4.2567265877 -4.4040807742 0.1663756375
Ar -3.9250252905 -1.5645954587 2.2565918093
Ar -4.5330343012 -3.7252027596 -0.8731873019
Ar 0.5329542873 -5.4849084726 -0.5353010627
Ar 1.2337954269 -3.4279675233 2.4320605151
Ar -1.6445537727 -2.8953256074 4.9807424566
Ar 1.0145365923 2.1911847597 0.2855464019
Ar 3.0409838637 0.6498809167 2.9910261111
Ar -0.0533343273 0.3204634561 -2.7250716382
Ar 2.2724510300 -1.4128329692 -0.4967679744
Ar -2.5614497012 1.2098564142 -0.0739864920
Ar -0.4723755316 -0.2010389776 2.7000141417
Ar -1.2546818716 -2.1850501532 -0.2396676361
38
i = 28, E = -0.0605649993
Ar 4.7192595583 -2.6075760202 3.2884619969
Ar -5.1637972134 2.0029384994 2.4196192407
Ar -3.4131883264 -0.9025653648 -3.1607695674
Ar 2.4199350317 -3.9956167547 -3.1689182553
Ar 0.5136297232 1.8058126500 5.6866442028
Ar -2.2995950964 -5.0186935789 1.9296731756
Ar -4.7758438427 2.6215698670 -2.6825348520
Ar 2.7249787721 -0.8299977028 -4.9910450001
Ar -1.6133914269 3.2643525722 2.9200345332
Ar 4.5892992582 3.4128308488 0.7953944916
Ar -0.7741334007 -1.2895093002 -6.0527397122
Ar -2.2322840011 2.0052254875 -5.3445710522
Ar -3.7552681870 4.7606102635 0.2332367454
Ar 1.9848951359 4.3189721441 3.3267543752
Ar 5.4059504820 -1.9508640845 -2.6035658481
Ar 5.7356462836 -0.1894957068 0.5947060312
Ar 2.4280078231 4.9364059331 -1.9482764474
Ar 1.4640338221 2.8091224490 -5.0021674135
Ar -0.1348551775 5.8621588586 0.6519310053
Ar -1.1441817442 3.8499540716 -2.3319017779
Ar 3.7164822861 1.4572018221 -2.2617270984
Ar -3.0429896251 0.5984979359 5.2239148481
Ar -1.2262318212 -3.9001478156 -3.4896052612
Ar -6.0079171858 -0.2151804972 -0.5374403481
Ar 1.8389772612 -1.6804427251 5.5983085292
Ar 4.1493657177 -4.4701840385 0.1016499000
Ar -3.8837585618 -1.5660215990 2.2298896324
Ar -4.5339493554 -3.7191833299 -0.8802726609
Ar 0.4561354676 -5.6050322595 -0.5420786136
Ar 1.1891911789 -3.5260498692 2.4206355182
Ar -1.6340778323 -2.9169674874 4.9622651897
Ar 1.0283526649 2.2376190588 0.3043986673
Ar 3.0861053063 0.7284241937 3.0110054434
Ar 0.0223053494 0.3015349884 -2.7040240724
Ar 2.3082016776 -1.3169877396 -0.3214744461
Ar -2.5250460382 1.1840769151 -0.0809443815
Ar -0.4123535476 -0.2275109257 2.6760258291
Ar -1.2078690161 -2.2292867592 -0.2704971468
38
i = 28, E = -0.0610675649
Ar 4.6732330929 -2.5831275668 3.1478606594
Ar -5.1419931760 1.9835694945 2.4189028243
Ar -3.3633865027 -0.9173868188 -3.1435938503
Ar 2.1342087340 -3.7125905996 -3.0875250383
Ar 0.5346529603 1.8041061184 5.6755191533
Ar -2.3420283529 -5.0421032170 1.9145396552
Ar -4.7201785763 2.5966080879 -2.7293224026
Ar 2.8045971598 -0.7115007798 -5.0667472183
Ar -1.6002623082 3.2448556409 2.9113059115
Ar 4.5920136667 3.4963341123 0.8134050000
Ar -0.7133695449 -1.4528586477 -5.9235060077
Ar -2.1366842305 1.9174306216 -5.3566297738
Ar -3.7531835741 4.7228515632 0.2131404832
Ar 1.9702205028 4.3758638362 3.3438536314
Ar 5.3205706589 -1.9509086187 -2.5461123994
Ar 5.8005847308 -0.0774879297 0.5922593833
Ar 2.4318433127 4.9851204017 -1.9283539744
Ar 1.5030960906 2.8641172923 -4.9699438622
Ar -0.1620161399 5.8798311763 0.6502292060
Ar -1.1215442033 3.8324058508 -2.3402612284
Ar 3.7243369762 1.4906058211 -2.2255646608
Ar -3.0051918303 0.5743429888 5.2065039555
Ar -1.4835408134 -4.1146693967 -3.4558124274
Ar -5.9857865715 -0.2009934016 -0.5514969381
Ar 1.8569338280 -1.6885026942 5.5333065642
Ar 4.0336548847 -4.5280733074 0.0255745512
Ar -3.8405300472 -1.5686905765 2.2018019869
Ar -4.5414370186 -3.7131873238 -0.8826050045
Ar 0.3874591678 -5.7149982584 -0.5630814145
Ar 1.1481918508 -3.6174705382 2.4043662385
Ar -1.6232913746 -2.9388887312 4.9439341902
Ar 1.0429946412 2.2830920573 0.3238979889
Ar 3.1319881970 0.8068468401 3.0360662541
Ar 0.1016002595 0.2852163659 -2.6795474989
Ar 2.3420584890 -1.2373582519 -0.1591901662
Ar -2.4872020216 1.1583099028 -0.0884775511
Ar -0.3554563845 -0.2528266907 2.6519029593
Ar -1.1571351332 -2.2778898233 -0.3106037797
38
i = 28, E = -0.0617412164
Ar 4.6260623696 -2.5561726751 3.0006440083
Ar -5.1189112924 1.9626563273 2.4185870685
Ar -3.3082597454 -0.9432271432 -3.1260247520