ABMEv_Agent.jl 7.59 KB
Newer Older
1
2
3
4
abstract type StdAgent end
abstract type MixedAgent end

mutable struct Agent{T,U}
5
    # history of traits for geotraits
6
    x_history::Array{U}
7
    # birth time of ancestors
8
    t_history::Array{Float64,1}
9
10
11
12
13
14
15
    # death rate
    d::Float64
    #birth rate
    b::Float64
end

# Constructors
16
# This  constructor should be used when one wants to impose the type of the agent (e.g. Mixed)
17
Agent{T}(xhist::Array{U}) where {T,U} = Agent{T,U}(reshape(xhist,:,1),[0.],0.,1.)
18
19

# This constructor is used by default
20
Agent(xhist::Array{U}) where {U <: Number} = Agent{StdAgent}(xhist)
21

22
Agent() = Agent(Float64[],0.,0.,1.)
23
import Base.copy
24
copy(a::Agent{T,U}) where {T,U} = Agent{T,U}(copy(a.x_history),copy(a.t_history),copy(a.d),copy(a.b))
25
26
copy(m::Missing) = missing

27
28
29
30
31
32
33
34
35
36
37
38
"""
    function new_world_G(nagents::Int,p::Dict; spread = 1., offset = 0.)
Returns an array of type Array{Union{Missing,Agent}} initialised with normal distribution.
Only relevant for Gillepsie algorithm as of now.
"""
function new_world_G(nagents::Int,p::Dict; spread = 1., offset = 0.)
    typeof(spread) <: Array ? spread = spread[:] : nothing;
    typeof(offset) <: Array ? offset = offset[:] : nothing;
    agent0 = [Agent( spread  .* randn(length(spread)) .+ offset) for i in 1:nagents]
    world0 = vcat(agent0[:],repeat([missing],Int(p["NMax"] - nagents)))
    return world0
end
39
40

# returns trait i of the agent
41
get_x(a::Agent) = a.x_history[:,end]
42
43
44
45
46
47
48
49
function get_geo(a::Agent{U,T},t::Number) where {U,T}
    tarray = vcat(a.t_history[2:end],convert(T,t))
    tarray .-= a.t_history
    return sum(get_xhist(a,1) .* tarray)
end
# This method can acces geotrait, while the second not
get_x(a::Agent,t::Number,i::Integer) = i > 0 ? a.x_history[Int(i),end] : get_geo(a,t)
get_x(a::Agent,i::Integer) = a.x_history[Int(i),end]
50
51
get_xhist(a::Agent,i::Number) = a.x_history[Int(i),:]
get_xhist(a::Agent) = a.x_history
52
get_thist(a::Agent) = a.t_history
53
54
55
get_d(a::Agent) = a.d
get_b(a::Agent) = a.b
get_fitness(a::Agent) = a.b - a.d
56
57
get_dim(a::Agent) = size(a.x_history,1)
get_nancestors(a::Agent) = size(a.x_history,2)
58
59

get_x(world::Array{T},trait::Integer) where {T <: Agent} = trait > 0 ? reshape(hcat(get_x.(world,trait)),size(world,1),size(world,2)) : throw(ErrorException("Not the right method, need `t` as an argument"))
60
"""
61
    get_x(world::Array{T},t::Number,trait::Integer) where {T <: Agent}
62
Returns trait of every agents of world in the form of an array which dimensions corresponds to the input.
63
If trait = 0 , we return the geotrait.
64

65
"""
66
get_x(world::Array{T},t::Number,trait::Integer) where {T <: Agent} = trait > 0 ? reshape(hcat(get_x.(world,trait)),size(world,1),size(world,2)) : reshape(hcat(get_geo.(world,t)),size(world,1),size(world,2))
67

68
69
70
71
"""
    get_xarray(world::Array{Agent,1})
Returns every traits of every agents of world in the form of an array
"""
72
73
74
75
76
function get_xarray(world::Array{T,1}) where {T <: Agent}
    return hcat(get_x.(world)...)
end

function get_xarray(world::Array{T,1},t::Number,geotrait::Bool=false) where {T <: Agent}
77
78
    xarray = hcat(get_x.(world)...)
    if geotrait
79
        xarray = vcat( xarray, get_geo.(world,t)')
80
    end
Victor's avatar
Victor committed
81
    return xarray
82
83
end

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# """
#     get_xhist(world::Vector{Agent},geotrait = false)
# Returns the trait history of every agents of world in the form of an 3 dimensional array,
# with
# - first dimension as the agent index
# - second as time index
# - third as trait index
# If geotrait = true, then a last trait dimension is added, corresponding to geotrait.
# Note that because number of ancestors are different between agents, we return an array which size corresponds to the minimum of agents ancestors,
# and return the last generations, dropping the youngest ones
# """
# function get_xhist(world::Vector{T}) where {T <: Agent}
#     hist = minimum(get_nancestors.(world))
#     ntraits = get_dim(first(world));
#     xhist = zeros(length(world), hist, ntraits + geotrait);
#     for (i,a) in enumerate(world)
#         xhist[i,:,1:end-geotrait] = get_xhist(a)[:,end-hist+1:end]';
#     end
#     return xhist
# end
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# TODO: This method broken, when one ask for the geotraits
# function get_xhist(world::Vector{T},t::Number,geotrait = false) where {T <: Agent}
#     hist = minimum(get_nancestors.(world))
#     ntraits = get_dim(first(world));
#     xhist = zeros(length(world), hist, ntraits + geotrait);
#     for (i,a) in enumerate(world)
#         xhist[i,:,1:end-geotrait] = get_xhist(a)[:,end-hist+1:end]';
#         if geotrait
#             xhist[i,:,ntraits+geotrait] = cumsum(get_xhist(a,1))[end-hist+1:end]
#         end
#     end
#     return xhist
# end


120
function world2df(world::Array{T,1},geotrait=false) where {T <: Agent}
121
122
123
124
125
126
127
128
129
130
131
    xx = get_xarray(world)
    dfw = DataFrame(:f => get_fitness.(world))
    for i in 1:size(xx,1)
        dfw[Meta.parse("x$i")] = xx[i,:]
    end
    if geotrait
        dfw[:g] = get_geo.(world)
    end
    return dfw
end

132
"""
133
    world2df(world::Array{T,1},t::Number,geotrait = false) where {T <: Agent}
134
135
136
137
Converts the array of agent world to a datafram, where each column corresponds to a trait of the
agent, and an extra column captures fitness.
Each row corresponds to an agent
"""
138
function world2df(world::Array{T,1},t::Number,geotrait = false) where {T <: Agent}
139
140
141
142
143
144
    xx = get_xarray(world)
    dfw = DataFrame(:f => get_fitness.(world))
    for i in 1:size(xx,1)
        dfw[Meta.parse("x$i")] = xx[i,:]
    end
    if geotrait
145
        dfw[:g] = get_geo.(world,t)
146
147
148
149
150
    end
    return dfw
end


151

152
"""
153
154
155
    function increment_x!(a::Agent{StdAgent,U},t::U,p::Dict) where U
This function increments agent by random numbers specified in p
ONLY FOR CONTINUOUS DOMAINS
156
"""
157
function increment_x!(a::Agent{StdAgent,U},t,p::Dict) where U
158
    tdim = length(p["D"])
Victor's avatar
Victor committed
159
    reflected = haskey(p,"reflected") ? p["reflected"] : false
160
    if reflected
Victor Boussange's avatar
Victor Boussange committed
161
        inc = [get_inc_reflected(get_x(a,1),p["D"][1] *randn())]
162
        if  tdim > 1
Victor Boussange's avatar
Victor Boussange committed
163
            inc = vcat(inc,(rand(tdim-1) < p["mu"][2:end]) .* p["D"][2:end] .* randn(tdim-1))
164
165
        end
    else
Victor Boussange's avatar
Victor Boussange committed
166
167
        # inc = yes no mutation * mutation
        inc = (rand(tdim) < vec(p["mu"])) .* vec(p["D"][:]) .* randn(tdim)
168
169
    end
    a.x_history = hcat(a.x_history, get_x(a) + reshape(inc,:,1));
170
    push!(a.t_history,t)
171
172
173
 end

 """
174
     function increment_x!(a::Agent{MixedAgent,U},t::U,p::Dict) where U
175
 This function increments first trait of agent with integer values, that are automatically reflected between 1 and p["nodes"].
176
177
Other traits are incremented as usual.
TODO : make it work for a graph type landscape, where domain is not a line anymore.
178
 """
179
 function increment_x!(a::Agent{MixedAgent,U},t,p::Dict) where U
180
181
182
183
184
185
     tdim = length(p["D"])
     inc = [round(get_inc_reflected(get_x(a,1),p["D"][1] *randn(),1,p["nodes"]))]
     if  tdim > 1
         inc = vcat(inc,(rand(tdim-1) < p["mu"][2:end]) .* p["D"][2:end] .* randn(tdim-1))
     end
     a.x_history = hcat(a.x_history, get_x(a) + reshape(inc,:,1));
186
     push!(a.t_history,t)
187
188
end

189
190
191
192


"""
get_inc_reflected(x::Number,inc::Number,s=-1,e=1)
193
194
    Here we increment the trajectory of trait 1 such that it follows a reflected brownian motion (1D)
"""
195
function get_inc_reflected(x::Number,inc::Number,s=-1,e=1)
196
    if x + inc < s
197
        inc = 2 * ( s - x ) - inc
198
    elseif  x + inc > e
199
        inc = 2 * ( e - x ) - inc
200
201
202
    else
        return inc
    end
203
    get_inc_reflected(x,inc,s,e)
204
205
206
end

"""
207
    function tin(t::Number,a::Number,b::Number)
208
209
210
if t in [a,b) returns 1. else returns 0
"""

211
function tin(t::Number,a::Number,b::Number)
212
213
214
215
216
217
218
219
220
221
    return t>=a && t<b ? 1. : 0.
end

function split_move(t)
    return .0 + 1/100*(t-20.)*tin(t,20.,120.) + tin(t,120.,Inf64)
end

function split_merge_move(t)
    return .0 + 1/30*(t-10.)*tin(t,10.,40.) + tin(t,40.,70.) + (1- 1/30*(t-70.))*tin(t,70.,100.)
end